Site-selective photoemission from delocalized valence shells induced by molecular rotation.

نویسندگان

  • Catalin Miron
  • Quan Miao
  • Christophe Nicolas
  • John D Bozek
  • Witold Andrałojć
  • Minna Patanen
  • Grazieli Simões
  • Oksana Travnikova
  • Hans Ågren
  • Faris Gel'mukhanov
چکیده

Due to the generally delocalized nature of molecular valence orbitals, valence-shell spectroscopies do not usually allow to specifically target a selected atom in a molecule. However, in X-ray electron spectroscopy, the photoelectron momentum is large and the recoil angular momentum transferred to the molecule is larger when the photoelectron is ejected from a light atom compared with a heavy one. This confers an extreme sensitivity of the rotational excitation to the ionization site. Here we show that, indeed, the use of high-energy photons to photoionize valence-shell electrons of hydrogen chloride offers an unexpected way to decrypt the atomic composition of the molecular orbitals due to the rotational dependence of the photoionization profiles. The analysis of the site-specific rotational envelopes allows us to disentangle the effects of the two main mechanisms of rotational excitation, based on angular momentum exchange between the molecule and either the incoming photon or the emitted electron.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attosecond time-resolved photoemission from core and valence states of magnesium.

We report on laser-assisted attosecond photoemission from single-crystalline magnesium. In strong contrast to the previously investigated transition metal tungsten, photoelectron wave packets originating from the localized core level and delocalized valence-band states are launched simultaneously from the solid within the experimental uncertainty of 20 as. This phenomenon is shown to be compati...

متن کامل

Site-specific valence-band photoemission study of a-Fe2O3

We have measured the site-specific valence electronic structure of a-Fe2O3 by using a spatially modulated x-ray standing wave as the excitation source for photoemission. Contributions to the valence-band density of states from oxygen and iron ions are separated by this method. Both a bonding and nonbonding state originating from oxygen ions are obtained. The valence densities of states from iro...

متن کامل

Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion

We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G0W0 calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges...

متن کامل

Observation and Origin of Extraordinary Atomic Mobility at Metal-Semiconductor Interfaces at Low Temperatures.

Extraordinarily high mobility of Si and Ge atoms at semiconductor (Si, Ge)-metal (Al) interfaces is observed at temperatures as low as 80 K during thin metal film deposition. In situ x-ray photoemission spectroscopic valence-band measurements reveal a changed chemical bonding nature of the semiconductor atoms, from localized covalentlike to delocalized metalliclike, at the interface with the Al...

متن کامل

Structural and spectroscopic studies of valence-delocalized diiron(II,III) complexes dupported by carboxylate-only bridging ligands.

The synthesis, molecular structures, and spectroscopic properties of a series of valence-delocalized diiron(II,III) complexes are described. One-electron oxidation of diiron(II) tetracarboxylate complexes afforded the compounds [Fe(2)(mu-O(2)CAr(Tol))(4)L(2)]X, where L = 4-(t)BuC(5)H(4)N (1b), C(5)H(5)N (2b), and THF (3b); X = PF(6)(-) (1b and 3b) and OTf(-) (2b). In 1b-3b, four mu-1,3 carboxyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014